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Theorem 4. (Arzela-Ascoli Theorem). Let K be a compact subset of Rp and let F be a subset
of the set of continuous functions on K, i.e. F ⊂ {f : K → Rq | f is continuous on K}. Then the
following properties are equivalent:
(1) The family F is bounded and uniformly equicontinuous on K.
(2) Every sequence from F has a subsequence which is uniformly convergent on K

to a uniformly continuous function f (which may not belong to F ).

Proof of (2) ⇒ F is bounded : Suppose that F is not bounded, then there exists a sequence
{fn}n∈N ⊂ F such that ‖fn‖K ≥ n, i.e ∃xn ∈ K such that ‖fn(xn)‖ ≥ n. This implies that fn cannot
have any subsequence that converges uniformly on K, since if fn had a subsequence, still denoted
by fn, that converges uniformly on K to a uniformly continuous function f (which may not

belong to F ), then we have ∞ = lim
n→∞

‖fn‖K ≤ lim
n→∞

‖fn − f‖K + lim
n→∞

‖f‖K < ∞ which is a

contradiction.

Proof of (2)⇒ F is uniform equicontinuous: Suppose that F is not uniformly equicontinuous
on K, then there exists an ε0 > 0, such that for each n ∈ N, there exist fn ∈ F , and xn, yn ∈ K
satisfying that ‖xn − yn‖ <

1

n
and ‖fn(xn) − fn(yn)‖ ≥ ε0. This implies that fn cannot have any

subsequence that converges uniformly on K, since if fn had a subsequence, still denoted by fn, that
converges uniformly on K to a uniformly continuous function f (which may not belong to

F ), thus
0 < ε0 ≤ lim

n→∞
‖fn(xn)− fn(yn)‖ = lim

n→∞
‖fn(xn)− f(xn) + f(xn)− f(yn) + f(yn)− fn(yn)‖

≤ lim
n→∞

‖fn(xn)− f(xn)‖+ lim
n→∞

‖f(xn)− f(yn)‖+ lim
n→∞

‖fn(yn)− f(yn)‖
≤ lim

n→∞
‖fn − f‖K + lim

n→∞
‖f(xn)− f(yn)‖+ lim

n→∞
‖fn − f‖K = 0,

which is a contradiction. Note that, in the last equality,
lim
n→∞

‖fn − f‖K = 0 since fn converges to f uniformly onK, and

lim
n→∞

‖f(xn)− f(yn)‖ = 0 since f is uniformly continuous onK, and ‖xn − yn‖ <
1

n
.

Proof of (1) ⇒ (2) Step (1): Using diagonal process to extract a subsequence from a
given sequence {fn} ⊂ F (a bounded family): Let S = K ∩Qp = {xi}i∈N. Note that S, called
a dense subset of K, is a countable set, and S = K, i.e. for each x ∈ K, and for each δ > 0, there
exists xi ∈ S such that xi ∈ B(δ, x) = {z ∈ Rp | ‖z − x‖ < δ}.
Suppose that F is bounded and {fn} is any sequence in F , then, since
(∗) {fn(x1)} is bounded in Rq ⇒ {fn} has a subsequence, denoted {f 1

n}, converges at x1.
Next, since
(∗) {f 1

n(x2)} is bounded in Rq ⇒ {f 1
n} has a subsequence, denoted {f 2

n}, converges at x2,
and x1 (since {f 2

n} is a subsequence of {f 1
n} that converges at x1).

Inductively, for each k ≥ 2, since

(∗)

{
{fk

n(xk+1)} is bounded inRq ⇒ {fk
n}has a subsequence, denoted {fk+1

n }, converges at

xk+1, andxj (since {fk+1
n } is a subsequence of {f j

n} that converges atxj for each j = 1, . . . , k.)
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{fn}
∪

{ f 1
1 f 1

2 f 1
3 · · · f 1

k · · · }(x1) → f(x1)
∪

{ f 2
1 f 2

2 f 2
3 · · · f 2

k · · · }(x2) → f(x2)
∪

{ f 3
1 f 3

2 f 3
3 · · · f 3

k · · · }(x3) → f(x3)
∪
· · ·
∪

{ fk
1 fk

2 fk
3 · · · fk

k · · · }(xk) → f(xk)

By setting gn = fn
n , we obtain a subsequence of {fn}. Note that for each k ∈ N, and for each

1 ≤ j ≤ k, gn = fn
n ∈ {f j

m}m∈N whenever n ≥ j. This implies that lim
n→∞

gn(xj) = f(xj) for each

1 ≤ j ≤ k and for all k ∈ N. Hence, lim
n→∞

gn(xj) = f(xj) for each xj ∈ S.
Proof of (1) ⇒ (2) Step (2): Using the uniform equicontinuity of F to show that the
subsequence gn (of fn) converges uniformly to f on K: In particular, we shall show that the
sequence gn (which is a subsequence of {fn} ⊂ F ) satisfies the Cauchy criterion for uniform con-

vergence on K to a uniformly continuous function f (which may not belong to F ), i.e.

for each ε > 0 and for each x ∈ K, there exists L ∈ N such that if m,n ≥ L, then ‖gn(x)−gm(x)‖ < ε.
For each ε > 0, since F is uniformly equicontinuous on K, there exists a δ = δ(ε) > 0 such that if
x, y ∈ K satisfying that ‖x − y‖ < δ, then ‖h(x) − h(y)‖ < ε for all h ∈ F . This implies that for
each each x ∈ K, since S = K ⊂ ∪∞i=1B(δ, xi), and each gn ∈ F , there exists an xi ∈ S such that

(∗) ‖x− xi‖ < δ =⇒ ‖gn(x)− gn(xi)‖ <
ε

3
for all n ∈ N.

Also, for the same ε > 0, since lim
n→∞

gn(xi) = f(xi), there exists L ∈ N such that

(†) for any m,n ≥ L, we have ‖gm(xi)− gn(xi)‖ <
ε

3
.

Therefore, combining (∗) and (†), we have for each x ∈ K and for any m,n ≥ L, we have

‖gn(x)− gm(x)‖ ≤ ‖gn(x)− gn(xi)‖+ ‖gn(xi)− gm(xi)‖+ ‖gm(xi)− gm(x)‖<ε
3

+
ε

3
+
ε

3
= ε.

This implies that for any m,n ≥ L, ‖gn − gm‖K < ε, and, gn converges uniformly on K

to a uniformly continuous function f (which may not belong to F ).
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Study guide of Chapter 3:
Outlines of (3.1): Apply the Implicit Function Theorem to study the following question:

Q: Let W be an open subset of Rm × Rn, F : W ⊂ Rm × Rn → Rn be a (vector-valued) function of
class C1, and (a, b) be a point in W ⊂ Rm × Rn satisfying F (a, b) = 0. When is there
(1) a function f(x), defined in some open set in Rn containing a, and
(2) an open set U ⊂ W ⊂ Rm+n containing (a, b),
such that for (x, y) ∈ U,

F (x, y) = 0⇐⇒ y = f(x)?

Read e.g. Theorem 3.1, Theorem 3.9 in the book, and Exercises 1− 3, 5− 7, 9 in (3.1)

Outlines of (3.2), (3.3), (3.5): There are three common ways of locally representing smooth
k−dimensional manifolds (e.g. curves, or surfaces if k = 1 or 2.) in Rn :

Type (1) : as the graph of a function, y = f(x), where f is of class C1, x ∈ B, and B is a connected
open set in Rk;
Type (2) : as the locus of an equation F (x, y) = 0, where F is of class C1;
Type (3) : parametrically, as the range of a C1 function g : U ⊂ Rm → Rn whose differential Dg
has rank k everywhere in a connected open set U.

Note that if a manifold can be represented locally in Type (1), then it can be represented
in both Types (2) and (3) by setting F (x, y) = y − f(x), and g(x) = (x, f(x)) forx ∈ B ⊂ Rk,
respectively. It is natural to ask the following converse, i.e.

Q: When can a manifold given locally in Types (2) or (3) be represented in Type (1)?

Read e.g. Theorem 3.11, Theorem 3.15, Theorem 3.21 in the book, and Exercises 1−3 in (3.2), and
1, 2 in (3.3).

Outlines of (3.4), (3.5): A question concerned here is:

Q: When can a mapping (or a transformation) f : Rn → Rn of class C1 have a local inverse? How
smooth is the inverse (if it exists)?

Read e.g. the following The Inverse Function Theorem in the book.
Theorem 3.18: Let U and V be open sets in Rn, a ∈ U, and b = f(a). Suppose that f : U → V is
a mapping of class C1 and the Fréchet derivative Df(a) is invertible (i.e. the Jacobian det Df(a)
is nonzero). Then ∃ neighborhoods M ⊂ U and N ⊂ V of a and b, respectively, so that f is a
one-to-one map from M onto N, and the inverse map f−1 from N to M is also C1. Moreover, if
y = f(x) ∈ N, D(f−1)(y) = [Df(x)]−1.

Note that if f is C1 with nonzero det Df(a) at an interior point a, then b = f(a) is also an interior
point of f(U), i.e. The Inverse Function Theorem also tells us that when an interior point
in the domain is mapped to an interior point in the range.

Also, read e.g. Theorem 3.20, Theorem 3.22 in the book, and Exercises 1, 2, 5 in (3.4) and 1 in (3.5).
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